Math 2050, alternative proof to uniform continuity theorem

Theorem 0.1. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function for some $a, b \in \mathbb{R}$, then f is uniform continuous.
Proof. Let $\varepsilon>0$ be given. We let S be the subset of $[a, b]$ containing $c \in[a, b]$ such that we can find $\delta>0$ so that for all $x, y \in[a, c]$ with $|x-y|<\delta$, we have $|f(x)-f(y)|<\varepsilon$.

Clearly, $a \in S$ trivially. By completeness of real number, $s=\sup S$ exists. By continuity of f at $x=a$, we must have $s \in(a, b]$. We want to show that $s=b \in S$. If this is the case, then we can find $\delta>0$ so that for all $x, y \in[a, b]$ with $|x-y|<\delta$, we will have

$$
|f(x)-f(y)|<\varepsilon .
$$

Then we are done.
Suppose $s<b$, since f is continuous at $x=s$ we can find $\delta_{0}>0$ such that for all $x, y \in\left(s-\delta_{0}, s+\delta_{0}\right) \subsetneq[a, b]$, we have

$$
|f(x)-f(y)| \leq|f(x)-f(s)|+|f(y)-f(s)|<\varepsilon .
$$

Since $s=\sup S$ and $a<s-\delta_{0}<\sup S$, there exists $s_{1} \in S$ such that $s-\frac{1}{2} \delta_{0}<s_{1} \leq \sup S$. In particular, we can find $\delta_{1}>0$ such that for all $x, y \in\left[a, s_{1}\right]$ with $|x-y|<\delta_{1}$, we have

$$
|f(x)-f(y)|<\varepsilon .
$$

Now we claim that $s+\frac{1}{2} \delta_{0} \in S$. For all $x, y \in\left[a, s+\frac{1}{2} \delta_{0}\right]$ where $|x-y|<\delta_{2}=\min \left\{\delta_{1}, s_{1}-s+\frac{1}{2} \delta_{0}\right\}$, we have either $x, y \in\left[a, s_{1}\right]$ or $x, y \in\left[s-\frac{1}{2} \delta_{0}, s+\frac{1}{2} \delta_{0}\right]$ since $|x-y|<s_{1}-s+\frac{1}{2} \delta_{0}$ (draw the graph to visualize it).

In the first case, since $|x-y|<\delta_{1}$ we have

$$
|f(x)-f(y)|<\varepsilon .
$$

In the second case, since $x, y \in\left(s-\delta_{0}, s+\delta_{0}\right)$, we also have

$$
|f(x)-f(y)|<\varepsilon .
$$

That said, $s+\frac{1}{2} \delta_{0} \in S$ implying contradiction. Hence $s=b$. Moreover, taking $s=b$ in the above argument, we see that $s=b \in S$.

